25 research outputs found

    Ambiguity in the perception of moving stimuli is resolved in favour of the cardinal axes

    Get PDF
    AbstractThe aim of this study was to determine whether there is a link between the statistical properties of natural scenes and our perception of moving surfaces. Accordingly, we devised an ambiguous moving stimulus that could be perceived as moving in one of three directions of motion. The stimulus was a circular patch containing three square-wave drifting gratings. One grating was always either horizontal or vertical; the other two had component directions of drift at 120° to the first (and to each other), producing four possible stimulus geometries. These were presented in a pseudorandom sequence. In brief presentations, subjects always perceived two of the gratings to cohere and move as a pattern in one direction, and the third grating to move independently in the opposite direction (its component direction). Although there were three equally plausible axes (one cardinal and two oblique) along which the coherent and independent motions could occur, subjects routinely saw motion along one of the cardinal axes. Thus, the visual system preferentially combines the two oblique gratings to form a pattern that drifts in the opposite direction to the cardinal grating. It was only when the contrast of one of the oblique gratings was changed that an oblique axis of motion was perceived. This perceptual anisotropy can be related to naturally occurring bias in the visual environment, notably the predominance of horizontal and vertical contours in our visual world

    Decoding working memory of stimulus contrast in early visual cortex

    Get PDF
    Most studies of the early stages of visual analysis (V1-V3) have focused on the properties of neurons that support processing of elemental features of a visual stimulus or scene, such as local contrast, orientation, or direction of motion. Recent evidence from electrophysiology and neuroimaging studies, however, suggests that early visual cortex may also play a role in retaining stimulus representations in memory for short periods. For example, fMRI responses obtained during the delay period between two presentations of an oriented visual stimulus can be used to decode the remembered stimulus orientation with multivariate pattern analysis. Here, we investigated whether orientation is a special case or if this phenomenon generalizes to working memory traces of other visual features. We found that multivariate classification of fMRI signals from human visual cortex could be used to decode the contrast of a perceived stimulus even when the mean response changes were accounted for, suggesting some consistent spatial signal for contrast in these areas. Strikingly, we found that fMRI responses also supported decoding of contrast when the stimulus had to be remembered. Furthermore, classification generalized from perceived to remembered stimuli and vice versa, implying that the corresponding pattern of responses in early visual cortex were highly consistent. In additional analyses, we show that stimulus decoding here is driven by biases depending on stimulus eccentricity. This places important constraints on the interpretation for decoding stimulus properties for which cortical processing is known to vary with eccentricity, such as contrast, color, spatial frequency, and temporal frequency

    Exploring structure and function of sensory cortex with 7 T MRI

    Get PDF
    In this paper, we present an overview of 7 Tesla magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) – defined here as 7 T and above – has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7 T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area

    Event-related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects

    Get PDF
    Recent fMRI studies of the human primary somatosensory cortex have been able to differentiate the cortical representations of different fingertips at a single-subject level. These studies did not, however, investigate the expected overlap in cortical activation due to the stimulation of different fingers. Here, we used an event-related design in six subjects at 7 Tesla to explore the overlap in cortical responses elicited in S1 by vibrotactile stimulation of the five fingertips. We found that all parts of S1 show some degree of spatial overlap between the cortical representations of adjacent or even nonadjacent fingertips. In S1, the posterior bank of the central sulcus showed less overlap than regions in the post-central gyrus, which responded to up to five fingertips. The functional properties of these two areas are consistent with the known layout of cytoarchitectonically defined subareas, and we speculate that they correspond to subarea 3b (S1 proper) and subarea 1, respectively. In contrast with previous fMRI studies, however, we did not observe discrete activation clusters that could unequivocally be attributed to different subareas of S1. Venous maps based on T2*-weighted structural images suggest that the observed overlap is not driven by extra-vascular contributions from large vein

    fMRI evidence that hyper-caricatured faces activate object-selective cortex

    Get PDF
    Many brain imaging studies have looked at the cortical responses to object categories and faces. A popular way to manipulate face stimuli is by using a "face space," a high dimensional representation of individual face images, with the average face located at the origin. However, how the brain responds to faces that deviate substantially from average has not been much explored. Increasing the distance from the average (leading to increased caricaturing) could increase neural responses in face-selective regions, an idea supported by results from non-human primates. Here, we used a face space based on principal component analysis (PCA) to generate faces ranging from average to heavily caricatured. Using functional magnetic resonance imaging (fMRI), we first independently defined face-, object- and scene-selective areas with a localiser scan and then measured responses to parametrically caricatured faces. We also included conditions in which the images of faces were inverted. Interestingly in the right fusiform face area (FFA), we found that the patterns of fMRI response were more consistent as caricaturing increased. However, we found no consistent effect of either caricature level or facial inversion on the average fMRI response in the FFA or face-selective regions more broadly. In contrast, object-selective regions showed an increase in both the consistency of response pattern and the average fMRI response with increasing caricature level. This shows that caricatured faces recruit processing from regions typically defined as object-selective, possibly through enhancing low-level properties that are characteristic of objects. [Abstract copyright: Copyright © 2023 Elson, Schluppeck and Johnston.

    Event-related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects

    Get PDF
    Recent fMRI studies of the human primary somatosensory cortex have been able to differentiate the cortical representations of different fingertips at a single-subject level. These studies did not, however, investigate the expected overlap in cortical activation due to the stimulation of different fingers. Here, we used an event-related design in six subjects at 7 Tesla to explore the overlap in cortical responses elicited in S1 by vibrotactile stimulation of the five fingertips. We found that all parts of S1 show some degree of spatial overlap between the cortical representations of adjacent or even nonadjacent fingertips. In S1, the posterior bank of the central sulcus showed less overlap than regions in the post-central gyrus, which responded to up to five fingertips. The functional properties of these two areas are consistent with the known layout of cytoarchitectonically defined subareas, and we speculate that they correspond to subarea 3b (S1 proper) and subarea 1, respectively. In contrast with previous fMRI studies, however, we did not observe discrete activation clusters that could unequivocally be attributed to different subareas of S1. Venous maps based on T2*-weighted structural images suggest that the observed overlap is not driven by extra-vascular contributions from large vein

    The effects of simulated hemianopia on eye movements during text reading

    Get PDF
    Vision loss is a common, devastating complication of cerebral strokes. In some cases the complete contra-lesional visual field is affected, leading to problems with routine tasks and, notably, the ability to read. Although visual information crucial for reading is imaged on the foveal region, readers often extract useful parafoveal information from the next word or two in the text. In hemianopic field loss, parafoveal processing is compromised, shrinking the visual span and resulting in slower reading speeds. Recent approaches to rehabilitation using perceptual training have been able to demonstrate some recovery of useful visual capacity. As gains in visual sensitivity were most pronounced at the border of the scotoma, it may be possible to use training to restore some of the lost visual span for reading. As restitutive approaches often involve prolonged training sessions, it would be beneficial to know how much recovery is required to restore reading ability. To address this issue, we employed a gaze-contingent paradigm using a low-pass filter to blur one side of the text, functionally simulating a visual field defect. The degree of blurring acts as a proxy for visual function recovery that could arise from restitutive strategies, and allows us to evaluate and quantify the degree of visual recovery required to support normal reading fluency in patients. Because reading ability changes with age, we recruited a group of younger participants, and another with older participants who are closer in age to risk groups for ischaemic strokes. Our results show that changes in patterns of eye movement observed in hemianopic loss can be captured using this simulated reading environment. This opens up the possibility of using participants with normal visual function to help identify the most promising strategies for ameliorating hemianopic loss, before translation to patient groups

    7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    Get PDF
    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception.This work wassupported by the European Community’s Seventh Framework Programme FP7/2007-2013 (Grant PITN-GA- 2011-290011), the Japan Society for the Promotion of Science (JSPS KAKENHI Grant 26870911), and the Wellcome Trust (Grant 095183/Z/10/Z).This is the final version of the article. It was originally published in the Journal of Neuroscience, 18 February 2015, 35(7): 3056-3072; doi: 10.1523/JNEUROSCI.3047-14.2015

    A probabilistic atlas of finger dominance in the primary somatosensory cortex

    Get PDF
    With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies

    Linking Multi-Modal MRI to Clinical Measures of Visual Field Loss After Stroke

    Get PDF
    Loss of vision across large parts of the visual field is a common and devastating complication of cerebral strokes. In the clinic, this loss is quantified by measuring the sensitivity threshold across the field of vision using static perimetry. These methods rely on the ability of the patient to report the presence of lights in particular locations. While perimetry provides important information about the intactness of the visual field, the approach has some shortcomings. For example, it cannot distinguish where in the visual pathway the key processing deficit is located. In contrast, brain imaging can provide important information about anatomy, connectivity, and function of the visual pathway following stroke. In particular, functional magnetic resonance imaging (fMRI) and analysis of population receptive fields (pRF) can reveal mismatches between clinical perimetry and maps of cortical areas that still respond to visual stimuli after stroke (Papanikolaou et al., 2014). Here, we demonstrate how information from different brain imaging modalities-visual field maps derived from fMRI, lesion definitions from anatomical scans, and white matter tracts from diffusion weighted MRI data-provides a more complete picture of vision loss. For any given location in the visual field, the combination of anatomical and functional information can help identify whether vision loss is due to absence of gray matter tissue or likely due to white matter disconnection from other cortical areas. We present a combined imaging acquisition and visual stimulus protocol, together with a description of the analysis methodology, and apply it to datasets from four stroke survivors with homonymous field loss (two with hemianopia, two with quadrantanopia). For researchers trying to understand recovery of vision after stroke and clinicians seeking to stratify patients into different treatment pathways, this approach combines multiple, convergent sources of data to characterize the extent of the stroke damage. We show that such an approach gives a more comprehensive measure of residual visual capacity-in two particular respects: which locations in the visual field should be targeted and what kind of visual attributes are most suited for rehabilitation
    corecore